
The Ethical Imperative of Efficient Computing
- or why making efficient software is an ethical obligation.

Introduction
Modern society runs on software. Every email sent, every document edited, and
every click of the Start Menu represents not just a moment of productivity, but
also a consumption of resources – energy, hardware capacity, and human time. As
hardware engineers have pushed the limits of efficiency (from low-power chips to
energy-saving devices), software has moved in the opposite direction, becoming
more resource-intensive without proportional gains in user benefit[1][2]. This
imbalance raises an ethical question: Do we have a responsibility to make computing
more efficient? The answer is yes. Ensuring our software is efficient is not just a
technical goal, but an ethical imperative, because inefficient computing at scale
harms the environment, wastes energy, and erodes human productivity and well-
being.

Efficient computing here refers primarily to software efficiency – delivering the
features and performance without consuming more resources than needed.
Unlike hardware (which has strong market and physical incentives to improve
energy efficiency), software efficiency has lagged behind. Why is this an ethical
concern? There are two major reasons: environmental impact and human
impact. Environmentally, bloated and inefficient software leads to higher
electricity usage and faster hardware obsolescence, contributing to carbon
emissions and e-waste. Socially, slow and inefficient software wastes countless
years of human life in aggregate, causing frustration and lost productivity. This
paper explores the historical context of software efficiency, examines the troubling
trend of modern software bloat, quantifies the environmental and human costs of
inefficiency, and argues that closing the efficiency gap is a matter of ethical
responsibility for software creators and policymakers.

Historical Context: Doing More with Less
In the early decades of computing, software had to do more with less. Hardware
was limited – processing power was measured in megahertz and memory in
megabytes, sometimes kilobytes – programmers were simply forced to optimize
ruthlessly to achieve anything at all. This era left us with a valuable lesson: many of
the core tasks people need (office productivity, email, basic data processing) are

https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Still%2C%20in%20this%20paper%20we,efficiency%20of%20digital%20services%20and
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Wirth's%20law%20is%20an%20adage,58%20is%20becoming%20faster

achievable with far fewer resources than modern software demands. For example,
in the late 1990s, a standard office computer running Windows 98 or Windows
2000 with Microsoft Office, could handle email, word processing, and spreadsheets
– essentially the same tasks that dominate office work today – on hardware
thousands of times less powerful than today’s machines. If not for modern
software incompatibilities and online requirements, those systems could still
enable a large portion of today’s office work[3][4]. This historical perspective
reveals that progress in software has not always been about necessity; often it has
been about taking advantage of abundant resources.

Computer scientists have long observed a troubling pattern: as hardware gets
faster, software often gets slower at nearly the same rate, resulting in no net gain
to the end user. This observation is famously codified in Wirth’s Law, which states:
“software is getting slower more rapidly than hardware is becoming faster”[5].
Niklaus Wirth noted in 1995 that software tends to grow in complexity and
resource demands, often outpacing the improvements in hardware speed. In his
essay A Plea for Lean Software, Wirth argued that many added software features
are “cute but not essential”, and that people often mistake unnecessary
complexity for sophistication – a mistake that carries a hidden cost in performance
and efficiency[6]. An old quip captures a similar idea: “What Intel giveth, Microsoft
taketh away.” This refers to how advances by hardware companies like Intel (faster
CPUs, more memory) are quickly consumed by heavier Windows operating
systems and applications[4]. In other words, each new generation of hardware is
immediately offset by more demanding software, leaving users with the same or
even worse perceived performance despite exponentially more computing
power[7].

The historical “last good” example often cited by IT veterans is Windows 2000 – an
operating system that, eventually, struck a balance of performance and simplicity.
Since then, many feel that user-facing performance has stagnated or regressed in
the Windows line, even as under-the-hood capabilities and hardware support
expanded[8]. Each successive version introduced new features and graphical
enhancements, but also more background processes, telemetry, and complexity.
The result is that tasks like opening a Start Menu or launching a text editor are
measurably slower on a brand new computer today than they did decades ago on
far weaker machines[9][10]. This isn’t to say we should literally go back to 1990s
software – security and functionality have improved – but the degree of inefficiency
growth is wildly disproportionate to the tangible benefits in most everyday
computing tasks. The historical record makes one thing clear: software bloat is
not an inevitability of progress, but a choice. We have achieved great things

https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Other%20common%20forms%20use%20the,8
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Wirth%20attributed%20the%20saying%20to,4
https://news.ycombinator.com/item?id=44124688#:~:text=msgodel%20%20%2039%20,40%20%5B%E2%80%93
https://news.ycombinator.com/item?id=44124688#:~:text=The%20decay%20of%20the%20start,the%20fractured%20mess%20of%20Windows
https://news.ycombinator.com/item?id=44124688#:~:text=Windows%20user%20interface%20is%20getting,of%20inconsistencies%20and%20UI%20experiments
https://news.ycombinator.com/item?id=44124688#:~:text=I%20think%20the%20,with%20advances%20in%20hardware%20performance
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Other%20common%20forms%20use%20the,8
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=He%20states%20two%20contributing%20factors,Its%20primary%20goal%20was%20to
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Adage%20on%20computer%20performance

under far stricter technical constraints; therefore, the rampant inefficiency of
modern software cannot be justified as the cost of innovation.

The Rise of Software Bloat and Its Causes
If hardware today is incredibly powerful and energy-efficient, why is software often
sluggish and inefficient? The answer lies in the phenomenon of software bloat –
the tendency of software to become more resource-intensive (using more CPU,
memory, disk space, and power) over time, without commensurate improvements
in functionality or user experience. Wikipedia succinctly defines software bloat as
when successive versions of a program become “perceptibly slower, use more
memory, disk space or processing power, or have higher hardware requirements than
the previous version, while making only dubious user-perceptible improvements.”[11] In
practice, this means that an update or new application version might consume
double the RAM and take longer to load, yet from the user’s perspective it doesn’t
enable much more than the older version did. This trend has been observed
across operating systems, office suites, web browsers, and more.

Several factors drive software bloat in the modern era:

 Feature Creep and Complexity: Developers often add features upon
features in each release, some essential, many not. The accumulation of
“nice-to-have” features can somewhat increase code complexity and size,
even though most users will only use a small fraction of the functionality.
(It’s telling that in Microsoft Word, a handful of commands account for the
majority of usage, while dozens of rarely-used features still incur a
performance and memory cost for everyone[12][6].) Wirth noted that
customers’ ignorance of which features are essential vs. optional allows
unnecessary complexity to flourish[6]. In essence, software companies often
compete on feature lists rather than optimization, under the assumption
that more features (tangible or not) add value – even if it slows things down.

 Abstraction and Heavy Frameworks: Modern software development
emphasizes high-level programming languages and frameworks for the
sake of developer productivity. While high-level tools speed up
development, they often introduce significant overhead at runtime[13]. For
example, many desktop applications today are built using Electron
(Chromium-based) or web frameworks, which essentially bundle a web
browser engine with each app. This approach simplifies cross-platform
development (one codebase for web, Windows, Mac, etc.), but at
tremendous computational cost: an Electron-based app often uses

https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=systems%20is%20not%20in%20hardware,Moving%20to%20higher%20level
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=He%20states%20two%20contributing%20factors,Its%20primary%20goal%20was%20to
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=He%20states%20two%20contributing%20factors,Its%20primary%20goal%20was%20to
https://blog.codinghorror.com/software-its-a-gas/#:~:text=It%20starts%20with%20Nathan%E2%80%99s%20four,Laws%20of%20Software
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Wikipedia%20defines%20it%20as%20%E2%80%9Ca,of%20a%20computer%20program%20become

hundreds of megabytes of memory and high CPU just to display what might
looks like a simple interface[14]. A user on a tech forum pointed out that
Slack, Microsoft Teams, and Visual Studio Code (all Electron apps)
together consume nearly 1 GB of RAM when idle, whereas traditional
native apps like Notepad++ or Emacs use under 30 MB for similar
functionality[14]. In other words, the convenience of these frameworks
means duplicating heavy browser engines across applications, wasting
memory and processing power for little user gain (especially when the apps
are essentially showing text, lists, or simple UIs).

 Lack of Optimization Incentives: The rapid growth of hardware
performance has perversely reduced the pressure on programmers to
optimize. When a new laptop comes with 16 GB of RAM and a multi-core
CPU, a developer may not notice (or may ignore) that their code is
inefficient, because it still runs “fast enough” on their high-end machine.
This dynamic was described humorously by former Microsoft CTO Nathan
Myhrvold in his laws of software: “Software is a gas; it expands to fit whatever
container it is stored in.”[15] and “Software growth makes Moore’s Law possible:
people buy new hardware because the software requires it.”[16]. In short, as
soon as hardware provides more capacity, software finds ways to use it up –
partly because developers take advantage of the breathing room to write
more general, less optimized code and include more features. In the past,
code had to be lean to even run; today, bloated code still runs, just silently
taxing the system resources in the background.

 Prioritizing Developer Convenience and Time-to-Market: In commercial
software development, delivering features quickly often takes precedence
over fine-tuning performance. Using large third-party libraries or higher-
level languages can speed up development, at the cost of including a lot of
code that one product might not actually need. Studies have shown that
including many third-party libraries (common in modern apps) can
increase energy use and slow performance, even if it accelerates
development[17][18]. The end result is a bigger, slower application, but it
arrives to market sooner or with more checklist features – a trade-off that
many companies are willing to make, assuming that hardware
advancements will cover the difference. Unfortunately, this mindset
cumulatively leads to industry-wide bloat.

 “Good Enough” Culture and User Tolerance: If users continue to accept
slower startup times or heavier applications as a fact of life, there is little

https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Software%20engineers%20base%20their
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=and%20thus%20the%20resulting%20software,Software%20engineers%20base%20their
https://blog.codinghorror.com/software-its-a-gas/#:~:text=2,new%20applications%2C%20and%20new%20users
https://blog.codinghorror.com/software-its-a-gas/#:~:text=It%20starts%20with%20Nathan%E2%80%99s%20four,Laws%20of%20Software
https://community.bitwarden.com/t/any-chance-of-a-native-non-electron-desktop-app/16854#:~:text=TadCooper%20,2021%2C%206%3A40pm%20%2011
https://community.bitwarden.com/t/any-chance-of-a-native-non-electron-desktop-app/16854#:~:text=TadCooper%20,2021%2C%206%3A40pm%20%2011

market pushback on inefficiency. For instance, when a typical user clicks the
Start Menu in the latest Windows and it lags for a second, they may attribute
it to “normal” computer slowness, not realizing that even this simple action
has become unnecessarily heavy. (Recent revelations showed parts of the
Windows 11 Start Menu are implemented with web technologies like React,
causing CPU spikes of 30–70% on each open[19][20]. Such design choices
are convenient for developers but not necessary for showing a menu of
programs – something operating systems have achieved instantaneously for
decades.) Yet, because today’s PCs have CPU cycles to spare, the inefficiency
remains largely invisible except as a slight delay or battery drain. Only when
multiplied across millions of users do these small costs manifest as
something truly concerning – a point we explore in the next sections.

In summary, software bloat is the product of many small decisions that favor
short-term gains (more features, faster development) over long-term
efficiency. Individually, a few extra milliseconds of CPU time or a few megabytes
of memory for convenience seem harmless. But collectively, these choices have led
to a landscape in which modern software routinely wastes resources at a
colossal scale. The ethical problem is that these wasted resources are not free –
they are paid for by higher energy consumption, carbon emissions, hardware
manufacturing, and the time and patience of users.

Environmental Impact of Inefficient Software
Digital technology might seem clean compared to industries like transportation or
manufacturing – after all, what is there to see except code and electrons? But the
carbon footprint of computing is very real, and it’s growing alarmingly. When
software is inefficient, it causes computers and data centers to consume more
electricity for the same tasks, which in turn means more fossil fuels burned (unless
all energy is renewable) and more carbon dioxide emitted. Consider these
sobering statistics:

 The Information and Communication Technology (ICT) sector as a whole –
which includes all our devices, software, and networks – is on track to
become a significant chunk of global emissions. A peer-reviewed study
projected that if trends continue, ICT’s share of global greenhouse gas
emissions could rise from about 1.5% in 2007 to over 14% by 2040[21].
Fourteen percent of global emissions is nearly half of what the entire
transportation sector emits today[21]. Much of this ICT footprint comes
from electricity usage by data centers, network infrastructure, and charging
billions of devices – and all of that usage is driven by software activity. In

https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7696418#:~:text=energy%20for%20the%20supporting%20ICT,the%20ICT%20explosive%20GHGE%20footprint
https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7696418#:~:text=energy%20for%20the%20supporting%20ICT,the%20ICT%20explosive%20GHGE%20footprint
https://lemmy.ca/post/45020319/16835617#:~:text=Windows%2011%20Start%20Menu%20Revealed,wouldn't%20complain%20about%20the%20performance
https://winaero.com/windows-11-start-menu-revealed-as-resource-heavy-react-native-app-sparks-performance-concerns/#:~:text=,depending%20on%20the%20hardware%20configuration

other words, every inefficient app or website, when scaled to millions or
billions of instances, directly contributes to climate change through
increased power consumption.

 Software inefficiency leads to wasted energy. One academic analysis put it
bluntly: “Moving to higher-level programming languages increases the energy
consumption. Software bloat and the increasing complexity of digital systems
further aggravate the problems.”[13] The authors argue that the major
concern for energy use in computing today “is not in hardware evolution but
in the way software is written,” labeling much of today’s software as
environmentally “black” (dirty) in terms of sustainability[2]. The implication is
that our devices could be performing the same computations with far less
energy if the software were optimized to do so; instead, cycles are wasted
on inefficient code, unnecessary background processes, or bloated web
pages.

 A vivid example is the common web page or mobile app. The median size of
a website has ballooned dramatically in the past decade – the average
desktop web page grew about 336% (from ~468 KB to over 2 MB) in
about ten years, and the average mobile web page grew over 1200% (from
~145 KB to nearly 1.9 MB) in the same period[22]. This bloat in content
(images, scripts, ads, auto-playing videos, high-resolution media) means
that even reading news or checking email in a web browser today can use
several times more data and processing than a decade ago. All that extra
data requires more energy to transmit and store. It’s no wonder that
internet traffic and data center loads have surged – but disturbingly, much
of it is not critical communications but entertainment and overhead. Cisco
reports that streaming video and entertainment account for over 80% of
global internet traffic, whereas web/data (which would include productivity
and essential services) is only ~12%[23][24]. Meanwhile, digital advertising
– bloated scripts and tracking pixels that piggyback on websites – may
account for up to 10% of all internet energy consumption by some
estimates[25]. This means a substantial portion of our ICT energy use is
going into pushing pixels for ads and tracking that the user did not explicitly
seek out.

 Even ostensibly simple tasks have a carbon footprint. Take the example of
an email. It’s just text, but the whole system behind it (data centers, network
equipment, the device retrieving and displaying it) consumes energy.
According to Mike Berners-Lee (author of How Bad Are Bananas?), the

https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=entertainment%20demand%20,ICT%20sector%20itself%20also%20increase
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=needed%20services%2C%20accounts%20for%20only,ICT%20is%20often%20motivated%20by
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Internet%20video%20is%20the%20dominant,Demand%20(VOD
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=change%20in%20the%20World%20Wide,The%20desktop
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Still%2C%20in%20this%20paper%20we,efficiency%20of%20digital%20services%20and
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=systems%20is%20not%20in%20hardware,Moving%20to%20higher%20level

average email – a short text sent between laptops – has a footprint of
around 0.3 grams of CO₂[26]. A longer email with an attachment might be
tens of grams CO₂[27]. That sounds tiny, but consider that globally we send
around 300 billion emails per day. If even a fraction of those are
unnecessary (think of all the “Reply All” emails or spam), that’s a significant
carbon waste. In fact, Berners-Lee estimated that all the world’s emails in
2019 could have emitted as much as 150 million tons of CO₂, about 0.3% of
global emissions[28]. The infrastructure for our emails – servers and storage
– now has a carbon footprint greater than the entire pre-2019 global
aviation (air travel) industry did[29]. It’s staggering: something as routine
as email has scaled to such heights that it’s outpacing airplanes in
emissions. And part of the reason is inefficiency and unnecessary volume
(spam alone was over half of email traffic[30], which is pure waste).

 Inefficient software shortens hardware lifespan, contributing to e-waste
and manufacturing emissions. When a new version of an application or OS
runs intolerably slow on an older device due to poor optimization, users are
often forced to replace otherwise functional hardware. Manufacturing new
computers and smartphones is very energy- and resource-intensive – the
production of chips, batteries, and components involves mining raw
materials and global supply chains. Research suggests that the emissions
from manufacturing ICT equipment can be as large as – or even greater than –
the emissions from using them[31]. By pushing frequent upgrade cycles (often
because the software became too heavy for the old hardware), we
effectively multiply the carbon footprint of computing: first in making the
new device, and then in powering it. Ethically, this is problematic because it’s
a form of planned obsolescence driven not by the users’ needs, but by
software inefficiency. A more efficient software ecosystem could extend the
useful life of devices, reducing the churn of gadgets and the mountains of
electronic waste (global e-waste is over 50 million tons per year and
growing). From an environmental standpoint, writing efficient code is as
important as building energy-efficient hardware; both are needed to curb
ICT’s footprint.

The numbers above underscore that software efficiency is directly tied to
sustainability. Every wasted CPU cycle, every algorithm that runs in 100 steps
when it could run in 10, ultimately translates into electricity drawn from the grid.
When aggregated across millions of devices, inefficient software design can
consume gigawatts of power and emit megatons of CO₂. Conversely, making
software more efficient (sometimes called “green software” development) is a

https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=carbon%20emissions
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=rebound%20effect%2C%20wherein%20a%20newer%2C,than%20they%20ever%20posted%20letters
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=So%20while%20emails%20themselves%20aren%E2%80%99t,are%20powered%20by%20fossil%20fuels
https://carbonliteracy.com/the-carbon-cost-of-an-email/#:~:text=Project%20carbonliteracy.com%20%20Berners,of%20the%20world's%20carbon%20footprint
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=The%20numbers%20go%20down%20if,03g%20CO2e
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=Image%3A%20Woman%20in%20a%20yellow,shirt%20checking%20her%20phone

powerful lever for environmental benefit. A simple initiative like optimizing a
popular application to use 40% less CPU could save enormous amounts of
energy worldwide if that app is running on, say, 500 million PCs. Indeed, some
software projects explicitly advertise efficiency as a feature: the developer of the
lightweight text editor Notepad++ famously stated that by optimizing routines and
using efficient C++ code, “Notepad++ is trying to reduce the world carbon dioxide
emissions”, because using less CPU power means lower energy draw and a
“greener environment”[32]. It might sound grandiose for a text editor, but this
statement recognizes a genuine truth: efficient software is eco-friendly
software.

For policymakers and corporate leaders, these environmental findings mean that
software choices and IT policies should be part of sustainability planning. It’s not
just a matter of what hardware or energy source you use, but what code you choose
to run. Encouraging use of efficient software, avoiding overly bloated applications,
and investing in optimization can be part of an organization’s carbon reduction
strategy. Just as “green building” design became a trend, green computing and
lean software must become a priority. The next section will also show that it’s not
only about carbon and electrons – inefficient software has a very real human cost
as well.

The Human Cost: Productivity and Time Wasted
In addition to environmental harm, inefficient computing causes a subtler but
deeply personal kind of damage: it steals time from people’s lives. In the
aggregate, the effect is astonishing – billions of small delays add up to entire
human lifetimes lost every year. From the office worker waiting for a sluggish
spreadsheet to recalculate, to the casual user staring at a “Not Responding”
program, these moments of delay and frustration have become so common that
we accept them as normal. But should we? Time is a non-renewable resource, and
designing software that unnecessarily wastes users’ time is an ethical failing in
user-centric design. Let’s consider the scale of the issue:

 A study by University of Copenhagen and Roskilde University found that, on
average, people waste between 11% and 20% of their computer time
dealing with delays and issues – essentially time when “the system was
slow, froze, or crashed” or the user was struggling with an unintuitive
interface[33]. This study spanned a range of professions (students, office
workers, IT professionals) and reflects general computing tasks. Up to one-
fifth of computer usage time was effectively lost to system issues and
inefficiencies[33]. Participants commonly reported problems like “the system

https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=The%20results%20showed%20that%20on,the%20task%20we%20want%20to
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=The%20results%20showed%20that%20on,the%20task%20we%20want%20to
https://msudenver.teamdynamix.com/TDClient/2313/Portal/KB/ArticleDet?ID=144133#:~:text=Based%20on%20the%20powerful%20editing,resulting%20in%20a%20greener%20environment

was slow” or “it is difficult to find things” as reasons for lost time[34].
Importantly, these weren’t rare one-off glitches – 84% of the time, the
same problems had occurred before for the user, and nearly as often they
expected the problem to recur[35]. This indicates persistent, systemic
inefficiencies rather than freak incidents.

 Translate those percentages to a work week, and the results are eye-
opening. Wasting 11–20% of your computer time could mean losing almost
a full day of work each week. In fact, the researchers noted that it could be
“half to a whole day of a normal working week” lost to computer
troubles[36]. For a full-time employee, that’s potentially hundreds of hours
per year. For a large company, it’s the equivalent of losing dozens of
employee-years of productivity across the staff – essentially paying people
to wait for progress bars or struggle with bloated software. One UK survey
likewise revealed that the average office worker loses about 24 working
days per year to slow or outdated technology[37] – that’s actually more
time than many workers get in annual vacation! The average employee in
that survey lost 46 minutes per day to tech delays, which again comes out to
roughly 8 hours a month, or 6–7 weeks per year of lost time[38]. When “time
is money,” the economic cost of this is huge – one analysis pegged it at
around £3,000 per employee per year in the UK, factoring in wages paid for
unproductive time[39]. But beyond money, think of the human experience:
frustration, stress, and the demoralizing feeling of being held back by tools
that are supposed to empower you.

 Specific examples of these delays are things we’ve all experienced. The
morning boot-up of a computer can take several minutes on an older
machine loaded with heavy startup applications – in the UK survey, just
booting up each day added up to 8.8 days per year of waiting[40]. Opening
large applications or files, dealing with an overloaded browser with too
many scripts, or waiting for a search function to find a simple result – these
are daily friction points. And while each instance may be only seconds or a
minute, across billions of devices those seconds are a collective tragedy of
wasted human potential. To illustrate: if a software update causes an extra
5 seconds delay in a common task for 1 billion users each day, that’s 5 billion
seconds lost daily – which is roughly 158 years of human time wasted per
day, globally. In a year, that single inefficiency would consume about 57,000
years of human time. No matter how small a delay seems, at scale it
becomes enormous.

https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=for%20with%20no%20return
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=for%20with%20no%20return
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=expensive%20to%20invest%20money%20in,paying%20for%20with%20no%20return
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=technology%20become%20a%20massive%20hinderance,to%20productivity%20in%20the%20workplace
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=With%2088%20per%20cent%20of,be%20wasted%20on%20computer%20problems
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=The%20two%20biggest%20categories%20of,the%20episodes%20could%20happen%20again
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=Some%20of%20the%20problems%20most,%E2%80%9D

 Psychological and social impacts are also significant. Workers report that
when technology “can’t keep up,” it causes them to lose focus and even feel
less satisfied with their jobs[41]. Frustration with slow, unresponsive
systems can lead to stress and burnout. In the survey, 1 in 10 employees
said persistent tech problems made them want to quit their job[42].
Over a quarter felt pressure to work overtime to compensate for tech-
related delays[43], essentially donating their personal time to make up for
inefficiencies. These human factors are often overlooked in IT budgeting.
We spend on new features and new hardware, but not enough on ensuring
the system responds quickly and reliably to the user. Yet from the user’s
perspective, speed and responsiveness are foundational features. A
flashy new capability in an app means nothing if the app constantly hangs or
lags.

The waste of human time due to inefficient software is ethically relevant because it
shows disrespect for the user. People’s time on this planet is precious; designing
software that routinely squanders that time (especially in aggregate) is an implicit
statement that the user’s time is less important than other considerations (like
developer convenience or added features). Good engineering and design should
strive to give time back to the user – or at least not steal it needlessly. This is part
of the imperative: efficiency in computing is not just about energy, but about
dignity and respect for the end-user’s life.

The Illusion of Progress: Inefficiency vs. Feature Gains
One might argue that modern software, despite being inefficient, delivers far more
functionality than the lean software of the past – thus the inefficiency is the price
of progress. However, on closer examination, there is little correlation between
how bloated software is and the value it delivers to the user. In many cases,
software has become inefficient without delivering substantially more value, or it
delivers new features that could have been achieved without such high costs. This
section dismantles the notion that inefficiency is acceptable as a byproduct of
added features, and shows that true innovation does not inherently require
greater resource usage.

Firstly, many new features are simply not relevant to a majority of users. For
example, modern word processors and email clients are packed with advanced
functions (like smart formatting, AI assistants, integration with cloud services, etc.),
but studies and usage data often show that most users utilize only a small core
set of features. In Microsoft Office, it’s often cited that the average user taps into
less than 10% of the available features. One analysis found that just five

https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=software%20problems%2C%201%20in%2010,want%20to%20quit%20their%20job
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=Increases%20frustration
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=It%20turns%20out%20that%20computer,boot%20up%20can%20hinder%20productivity

commands (like Paste, Save, Copy, Undo, Bold) made up nearly a third of all
commands used in Word[44]. The flip side is that 90% of the complexity is rarely
touched by typical users. Yet everyone pays the price in performance, because the
software loads all that functionality and carries the weight of it. In effect, a vast
portion of modern software’s code is dead weight for most users’ purposes,
existing to check a box or serve niche cases while slowing down the common
cases. The ethical question here: is it right to burden billions of users (and the
planet) with the cost of features that only a tiny fraction need? A more efficient
approach might be modular software – load features on demand – but that
requires careful design that many products lack.

Secondly, most inefficiencies are purely architectural and bring no user
benefit at all. The Windows 11 Start Menu example is emblematic: Microsoft
reimplemented parts of the Start Menu using web-like technologies (React Native)
[19], possibly to facilitate certain integrations or developer workflows. The end
result was a Start Menu that cause noticeable CPU spikes (30–70% on a core) each
time it opens[19], and users observed lag and stutters where none existed before.
From a features perspective, the Start Menu didn’t meaningfully gain from this – it
simply shows apps and a “Recommended” file list with some cloud integration. All
of that could be (and was) done with native code far more efficiently in earlier
Windows versions. In this case, the inefficiency isn’t tied to a “feature” that users
asked for; it’s a side effect of internal development choices. As one technologist
lamented, “The decay of the Start Menu into a laggy, unpredictable surface for
advertising is perhaps the pinnacle of Windows’ downfall”[9] – pointing out that what
should be a simple utility has turned into a vehicle for unnecessary web content
and even ads, undermining the user experience. This is faux progress: a more
complex implementation delivering a worse outcome.

The broader pattern is that software often grows for reasons other than
delivering core value. Competitive pressures can lead companies to keep
changing interfaces (sometimes for trendy aesthetics or “freshness” rather than
true improvement), integrate new services (to capture users in ecosystems), or
collect more data (telemetry and analytics running in the background). These
changes can make software heavier without making it more useful. A candid
comment from an observer of the software industry put it this way: “Everything in
Windows these days is wasting time stealing your data, loading ads or other
unnecessary data from cloud services, and interacting with ‘AI.’ Performance is one of
the lowest priorities… Microsoft consistently replaces things with modernized, but
worse, versions and never returns to finish making the new version as good as the
previous version that evolved over decades.”[45]. While a bit harsh, this critique

https://news.ycombinator.com/item?id=44124688#:~:text=The%20decay%20of%20the%20start,the%20fractured%20mess%20of%20Windows
https://winaero.com/windows-11-start-menu-revealed-as-resource-heavy-react-native-app-sparks-performance-concerns/#:~:text=,depending%20on%20the%20hardware%20configuration
https://winaero.com/windows-11-start-menu-revealed-as-resource-heavy-react-native-app-sparks-performance-concerns/#:~:text=,depending%20on%20the%20hardware%20configuration
https://lemmy.ca/post/45020319/16835617#:~:text=But%20everything%20in%20Windows%20these,because%20of%20a%20recent%20regression
http://googlesystem.blogspot.com/2008/02/most-frequently-used-features-in.html#:~:text=The%20Most%20Frequently%20Used%20Features,away

captures the feeling that new does not always mean better – especially if “new”
means a reset of maturity. Often, mature efficient software is replaced with a
“modern” rewrite that lacks polish and runs slower, just to fit a new business
model or design trend.

This illusion of progress is dangerous because it normalizes inefficiency. Users
come to believe that needing the latest hardware to run basic tasks is “just how it
is,” or that waiting is part of computing. It doesn’t have to be. When software is
thoughtfully engineered, feature advancement can happen in tandem with
efficiency. An example is the video game industry: game developers operate under
tight performance constraints (games must run at 60+ frames per second or users
notice immediately) and yet have delivered astonishing improvements in graphics
and gameplay. They achieve progress by optimization, innovating in algorithms,
and using hardware acceleration wisely – not by accepting slowness. This shows
that when performance is treated as a feature, progress doesn’t suffer; in fact, it
excels. Unfortunately, in many general software domains, performance is not
given the same priority. As a result, we have text editors (Electron-based) that use
more RAM than an entire operating system from 20 years ago, or note-taking apps
that consume as much CPU as an enterprise database.

It is also worth noting that true innovation can sometimes save resources. For
example, modern compression algorithms, peer-to-peer distribution, or efficient
cloud architectures can deliver new capabilities while reducing data transfer and
storage needs. If similar inventive effort were put into everyday software efficiency
as is put into adding new bells and whistles, we could break the cycle of bloat. The
fact that some software (e.g., certain Linux distributions or lightweight apps)
manage to stay extremely efficient even today indicates that inefficiency is not a
requirement of modernity – it’s a byproduct of certain choices.

In ethical terms, delivering new features without considering efficiency is an
incomplete notion of progress. Progress in computing should be measured not
only by what software can do, but how efficiently it does it – achieving the goal
without waste. The best technology improves peoples’ lives without collateral
damage. Therefore, claiming that inefficient software is justified by its features
ignores the possibility (and responsibility) to innovate in smarter ways. The
nearly zero correlation between bloat and user benefit is a call to action: we must
demand and develop software that advances on both functionality and efficiency
axes together.

Towards Efficient and Sustainable Computing: A Call to Action
The evidence is clear that inefficient software is not just a harmless annoyance – it
is a serious issue with ethical, environmental, and societal dimensions. We stand at
a crossroads where we must consciously choose to reverse the trend of ever-
expanding software bloat. The ethical imperative of efficient computing can be
summed up simply: we should not squander resources – whether electricity, hardware,
or human lifetime – for want of care and discipline in software design. The following
are key takeaways and recommendations to drive this point home:

 Recognize Efficiency as a Feature: policymakers and industry leaders
should treat software efficiency on par with security, accessibility, and other
quality metrics. This means incorporating efficiency requirements into
software projects (e.g., setting performance budgets, energy use targets)
and spending the required development cost to achieve them. Just as
energy labels exist for appliances, we may need efficiency rating for
software. Imagine choosing a word processor not just on price or interface,
but knowing which one gets the job done in the resource efficient way.
Informed consumers can create demand for leaner software.

 Incentivize Sustainable Software Development: At the corporate and
government level, incentives could be provided for software that
demonstrably reduces carbon footprint. For example, governments could
offer “green tech” certifications or tax benefits for software companies that
optimize their applications to extend device lifetimes (thus reducing e-
waste) and minimize energy use. Large tech firms and cloud providers can
lead by optimizing their own services – every CPU cycle saved in a data
center is magnified by scale. The Green Software Foundation and similar
initiatives are already bringing companies together to share best practices
for building energy-efficient applications[46]. This momentum needs to
continue and expand.

 Educate and Empower Developers: Many software engineers have never
been trained to think about energy efficiency or taught the old-school
optimization techniques that were necessary in a bygone era. Most modern
software development consists of importing huge amounts of prefabricated
software parts “libraries” into the code, then writing a modest amount of
code to glue the prefabricata together in ways that achieve the desired
outcome, this makes development easier and often much faster, but it
introduces potentially enormous amounts of resource waste. Incorporating

https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Anderson%20et%20al.%20,of%20the%20carbon%20footprint%20of

principles of “green code” and efficient algorithms into computer science
curricula and developer training can raise awareness. Simple practices like
algorithmic optimization, including efficiency when considering whether to
create something specifically for the problem at hand or use prefabricata,
and choosing efficient data structures can have large impacts. Moreover,
developers should be given tools to measure the performance and energy
impact of their code. Profiling and monitoring should include not just speed
but power consumption. With the right feedback, engineering teams can
iteratively improve efficiency just as they do with speed or memory leaks.
Much of the energy usage a developer can cause comes not from the code
that developer wrote, but from the libraries and frameworks they used.

 Embrace “Digital Sufficiency” Philosophy: A concept emerging in
sustainability circles is digital sufficiency – using the right amount of tech, but
not more than necessary[47]. In practical terms for software, this means
avoiding over-engineering. If a lightweight solution exists (e.g., a native app
or a simpler framework), consider using it instead of a heavy, generalized
one, especially for simple tasks. It also means reconsidering feature sets:
pursue the 80/20 rule – focus on the 20% of features that deliver 80% of
value, and implement them in the most efficient way possible. Features that
are rarely used but add considerable bloat might be made optional or left
out, especially if they trigger continuous resource usage.

 Optimize for Longevity: Efficient computing aligns with right to repair and
device longevity movements. Software should be developed to run well on
older hardware for as long as possible. Not everyone has the latest device,
nor should they need it to perform basic tasks. By making software scalable
(able to turn off fancy effects or choose lower resource modes), developers
can ensure inclusion and reduce the forced-upgrade cycle. This could
involve releasing “light” or “classic” versions of apps aimed at low-end
hardware or simply incorporating adaptive performance settings. It’s
encouraging that some software makers have started doing this (for
instance, offering HTML lite versions of web email for slow connections, or
“battery saver” modes that reduce animations and background activity).

 Policy and Cultural Change: At the organizational level, IT policy can
discourage the deployment of needlessly heavy applications. Governments
and enterprises that procure software can ask vendors to provide
information on resource requirements and efficiency, and favor software
that meets efficiency benchmarks. Culturally, we can also combat the notion

https://pmc.ncbi.nlm.nih.gov/articles/PMC10427517/#:~:text=Digital%20sufficiency%3A%20conceptual%20considerations%20for,1%20In

that “newer is automatically better.” Users and managers should question
updates that degrade performance. If an update makes the user experience
worse (slower, more bloated) without clear benefit, that should be seen as a
regression – perhaps even an unacceptable one. This mindset shift can
pressure software providers to optimize rather than assume customers will
just buy new hardware.

 Measure and Publicize Impact: We need more research and transparency
on the impact of software inefficiency. Just as we have statistics on how
many tons of CO₂ a flight produces, we should quantify what a heavy app or
inefficient code costs in emissions. Some researchers have proposed a
Software Carbon Intensity (SCI) metric to rate applications by how much
carbon they emit per unit of work[48][49]. If such metrics were widely
published, it could influence procurement and consumer choices.
Additionally, publicizing the human time lost to slow software in terms of
aggregate years could be a powerful moral statistic that grabs headlines.
For instance, imagine a yearly “Global Software Waste Report” that says “X
million human-hours and Y GWh of energy were lost due to software
inefficiencies this year.” This kind of report can spur action in the same way
reports on traffic congestion or air pollution do.

In conclusion, efficient computing is an ethical imperative because it speaks to
how we steward both our planet’s resources and our own time. The status quo of
bloated software is not only technically suboptimal; it is ethically unsound when
viewed in the light of climate change and respect for users. We have the
knowledge and the tools to do better. As the adage goes, “With great power comes
great responsibility.” Our computers and software today have great power – far
more than necessary for most tasks. Therefore, it is our responsibility to harness
that power judiciously, avoiding wanton waste. By re-aligning priorities – valuing
optimization, acknowledging the hidden costs of inefficiency, and striving for lean
design – the tech industry can innovate in a way that is sustainable and respectful.
The progress of tomorrow should not be measured just in features added, but
also in waste eliminated. The ethical choice is clear: we must make efficiency a
cornerstone of computing’s future, so that technological advancement and
environmental stewardship go hand in hand, and so that computing empowers
humanity without inadvertently hindering it through waste.

https://pmc.ncbi.nlm.nih.gov/articles/PMC10427517/#:~:text=planet%20pmc,1%20In
https://hbr.org/2020/09/how-green-is-your-software#:~:text=By%202040%2C%20it%20is%20expected,of%20software%20can%20be

Sources:

 Niklaus Wirth, A Plea for Lean Software, on software bloat vs hardware
progress[6][4].

 University of Copenhagen study on time wasted due to computer
problems[33][36].

 Belkhir & Elmeligi (2018) on ICT’s rising share of global carbon footprint[21].
 Manner et al. (2022) on energy unsustainability of software, “software

bloat…aggravates problems”[13].
 Notepad++ project statement on optimizing for lower CO2 emissions[32].
 Pawprint eco analysis on carbon footprint of emails (0.3g CO₂ per email on

average)[26].
 Currys/Elite study: 24 days/year lost by office workers to slow tech[37].
 Hacker News discussion highlighting Windows 11 Start Menu

inefficiencies[50][9] and Electron app memory usage vs native[14].
 Jeff Atwood, Software is a Gas (citing Nathan Myhrvold’s laws of software

growth)[51].
 HTTP Archive data on web page bloat, ~3-12× growth in page sizes over a

decade[22].
 Comments on modern Windows focusing on ads/telemetry at expense of

performance[45].

(All citations are provided to underscore claims and statistics made in this paper.
The urgency for efficient computing is backed by these multidisciplinary findings,
from academic research to industry surveys and expert observations.)[21][11][32]
[33]

[1] [3] [4] [5] [6] Wirth's law - Wikipedia

https://en.wikipedia.org/wiki/Wirth%27s_law

[2] [11] [13] [17] [18] [22] [23] [24] [25] [31] [46] (PDF) Black software - the energy
unsustainability of software systems in the 21st Century

https://www.researchgate.net/publication/366626189_Black_software_-
_the_energy_unsustainability_of_software_systems_in_the_21st_Century

[7] [8] [9] [10] [50] Windows 11 Start Menu Revealed as Resource-Heavy React
Native App | Hacker News

https://news.ycombinator.com/item?id=44124688#:~:text=Microsoft%201995%3A%20No%2C%20the%20taskbar,386SX%20with%204MB%20of%20RAM
https://news.ycombinator.com/item?id=44124688#:~:text=msgodel%20%20%2039%20,40%20%5B%E2%80%93
https://news.ycombinator.com/item?id=44124688#:~:text=The%20decay%20of%20the%20start,the%20fractured%20mess%20of%20Windows
https://news.ycombinator.com/item?id=44124688#:~:text=Windows%20user%20interface%20is%20getting,of%20inconsistencies%20and%20UI%20experiments
https://news.ycombinator.com/item?id=44124688#:~:text=I%20think%20the%20,with%20advances%20in%20hardware%20performance
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Anderson%20et%20al.%20,of%20the%20carbon%20footprint%20of
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=carbon%20emissions
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=entertainment%20demand%20,ICT%20sector%20itself%20also%20increase
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=needed%20services%2C%20accounts%20for%20only,ICT%20is%20often%20motivated%20by
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Internet%20video%20is%20the%20dominant,Demand%20(VOD
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=change%20in%20the%20World%20Wide,The%20desktop
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Software%20engineers%20base%20their
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=and%20thus%20the%20resulting%20software,Software%20engineers%20base%20their
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=systems%20is%20not%20in%20hardware,Moving%20to%20higher%20level
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Wikipedia%20defines%20it%20as%20%E2%80%9Ca,of%20a%20computer%20program%20become
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Still%2C%20in%20this%20paper%20we,efficiency%20of%20digital%20services%20and
https://en.wikipedia.org/wiki/Wirth's_law
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=He%20states%20two%20contributing%20factors,Its%20primary%20goal%20was%20to
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Adage%20on%20computer%20performance
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Other%20common%20forms%20use%20the,8
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Wirth%20attributed%20the%20saying%20to,4
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Wirth's%20law%20is%20an%20adage,58%20is%20becoming%20faster
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=The%20results%20showed%20that%20on,the%20task%20we%20want%20to
https://msudenver.teamdynamix.com/TDClient/2313/Portal/KB/ArticleDet?ID=144133#:~:text=Based%20on%20the%20powerful%20editing,resulting%20in%20a%20greener%20environment
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=Wikipedia%20defines%20it%20as%20%E2%80%9Ca,of%20a%20computer%20program%20become
https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7696418#:~:text=energy%20for%20the%20supporting%20ICT,the%20ICT%20explosive%20GHGE%20footprint
https://lemmy.ca/post/45020319/16835617#:~:text=But%20everything%20in%20Windows%20these,because%20of%20a%20recent%20regression
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=change%20in%20the%20World%20Wide,The%20desktop
https://blog.codinghorror.com/software-its-a-gas/#:~:text=1,new%20applications%2C%20and%20new%20users
https://community.bitwarden.com/t/any-chance-of-a-native-non-electron-desktop-app/16854#:~:text=TadCooper%20,2021%2C%206%3A40pm%20%2011
https://news.ycombinator.com/item?id=44124688#:~:text=The%20decay%20of%20the%20start,the%20fractured%20mess%20of%20Windows
https://news.ycombinator.com/item?id=44124688#:~:text=Microsoft%201995%3A%20No%2C%20the%20taskbar,386SX%20with%204MB%20of%20RAM
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=technology%20become%20a%20massive%20hinderance,to%20productivity%20in%20the%20workplace
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=Image%3A%20Woman%20in%20a%20yellow,shirt%20checking%20her%20phone
https://msudenver.teamdynamix.com/TDClient/2313/Portal/KB/ArticleDet?ID=144133#:~:text=Based%20on%20the%20powerful%20editing,resulting%20in%20a%20greener%20environment
https://www.researchgate.net/publication/366626189_Black_software_-_the_energy_unsustainability_of_software_systems_in_the_21st_Century#:~:text=systems%20is%20not%20in%20hardware,Moving%20to%20higher%20level
https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7696418#:~:text=energy%20for%20the%20supporting%20ICT,the%20ICT%20explosive%20GHGE%20footprint
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=With%2088%20per%20cent%20of,be%20wasted%20on%20computer%20problems
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=The%20results%20showed%20that%20on,the%20task%20we%20want%20to
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=Other%20common%20forms%20use%20the,8
https://en.wikipedia.org/wiki/Wirth's_law#:~:text=He%20states%20two%20contributing%20factors,Its%20primary%20goal%20was%20to

https://news.ycombinator.com/item?id=44124688

[12] [15] [16] [51] Software: It’s a Gas

https://blog.codinghorror.com/software-its-a-gas/

[14] Any Chance of a Native Non-electron Desktop app? - Password Manager -
Bitwarden Community Forums

https://community.bitwarden.com/t/any-chance-of-a-native-non-electron-desktop-
app/16854

[19] Windows 11 Start Menu Revealed as Resource-Heavy React Native ...

https://winaero.com/windows-11-start-menu-revealed-as-resource-heavy-react-
native-app-sparks-performance-concerns/

[20] [45] Windows 11 Start Menu Revealed as Resource-Heavy React Native ...

https://lemmy.ca/post/45020319/16835617

[21] Assessing ICT global emissions footprint: Trends to 2040 & recommendations
| Health & Environmental Research Online (HERO) | US EPA

https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7696418

[26] [27] [29] [30] What’s the carbon footprint of an email?

https://www.pawprint.eco/eco-blog/carbon-footprint-email

[28] The Carbon Cost of an Email: Update! - The Carbon Literacy Project

https://carbonliteracy.com/the-carbon-cost-of-an-email/

[32] Article - What is Notepad++?

https://msudenver.teamdynamix.com/TDClient/2313/Portal/KB/ArticleDet?
ID=144133

[33] [34] [35] [36] Tech News : Study Shows 20% Of Time Wasted Within IT - Surf
Tech IT

https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/

[37] [38] [39] [40] [41] [42] [43] Office workers waste more time on slow tech than
they spend on holiday - Elite Business Magazine

https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=software%20problems%2C%201%20in%2010,want%20to%20quit%20their%20job
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=Increases%20frustration
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=It%20turns%20out%20that%20computer,boot%20up%20can%20hinder%20productivity
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=for%20with%20no%20return
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=for%20with%20no%20return
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=expensive%20to%20invest%20money%20in,paying%20for%20with%20no%20return
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday#:~:text=technology%20become%20a%20massive%20hinderance,to%20productivity%20in%20the%20workplace
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=With%2088%20per%20cent%20of,be%20wasted%20on%20computer%20problems
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=The%20two%20biggest%20categories%20of,the%20episodes%20could%20happen%20again
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=Some%20of%20the%20problems%20most,%E2%80%9D
https://surftechit.co.uk/tech-news-study-shows-20-of-time-wasted-within-it/#:~:text=The%20results%20showed%20that%20on,the%20task%20we%20want%20to
https://msudenver.teamdynamix.com/TDClient/2313/Portal/KB/ArticleDet?ID=144133
https://msudenver.teamdynamix.com/TDClient/2313/Portal/KB/ArticleDet?ID=144133
https://msudenver.teamdynamix.com/TDClient/2313/Portal/KB/ArticleDet?ID=144133#:~:text=Based%20on%20the%20powerful%20editing,resulting%20in%20a%20greener%20environment
https://carbonliteracy.com/the-carbon-cost-of-an-email/
https://carbonliteracy.com/the-carbon-cost-of-an-email/#:~:text=Project%20carbonliteracy.com%20%20Berners,of%20the%20world's%20carbon%20footprint
https://www.pawprint.eco/eco-blog/carbon-footprint-email
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=rebound%20effect%2C%20wherein%20a%20newer%2C,than%20they%20ever%20posted%20letters
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=So%20while%20emails%20themselves%20aren%E2%80%99t,are%20powered%20by%20fossil%20fuels
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=The%20numbers%20go%20down%20if,03g%20CO2e
https://www.pawprint.eco/eco-blog/carbon-footprint-email#:~:text=Image%3A%20Woman%20in%20a%20yellow,shirt%20checking%20her%20phone
https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7696418
https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7696418#:~:text=energy%20for%20the%20supporting%20ICT,the%20ICT%20explosive%20GHGE%20footprint
https://lemmy.ca/post/45020319/16835617
https://lemmy.ca/post/45020319/16835617#:~:text=But%20everything%20in%20Windows%20these,because%20of%20a%20recent%20regression
https://lemmy.ca/post/45020319/16835617#:~:text=Windows%2011%20Start%20Menu%20Revealed,wouldn't%20complain%20about%20the%20performance
https://winaero.com/windows-11-start-menu-revealed-as-resource-heavy-react-native-app-sparks-performance-concerns/
https://winaero.com/windows-11-start-menu-revealed-as-resource-heavy-react-native-app-sparks-performance-concerns/
https://winaero.com/windows-11-start-menu-revealed-as-resource-heavy-react-native-app-sparks-performance-concerns/#:~:text=,depending%20on%20the%20hardware%20configuration
https://community.bitwarden.com/t/any-chance-of-a-native-non-electron-desktop-app/16854
https://community.bitwarden.com/t/any-chance-of-a-native-non-electron-desktop-app/16854
https://community.bitwarden.com/t/any-chance-of-a-native-non-electron-desktop-app/16854#:~:text=TadCooper%20,2021%2C%206%3A40pm%20%2011
https://blog.codinghorror.com/software-its-a-gas/
https://blog.codinghorror.com/software-its-a-gas/#:~:text=1,new%20applications%2C%20and%20new%20users
https://blog.codinghorror.com/software-its-a-gas/#:~:text=2,new%20applications%2C%20and%20new%20users
https://blog.codinghorror.com/software-its-a-gas/#:~:text=It%20starts%20with%20Nathan%E2%80%99s%20four,Laws%20of%20Software
https://blog.codinghorror.com/software-its-a-gas/#:~:text=It%20starts%20with%20Nathan%E2%80%99s%20four,Laws%20of%20Software
https://news.ycombinator.com/item?id=44124688

https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-
on-slow-tech-than-they-spend-on-holiday

[44] The Most Frequently Used Features in Microsoft Office

http://googlesystem.blogspot.com/2008/02/most-frequently-used-features-in.html

[47] [49] Digital sufficiency: conceptual considerations for ICTs on a finite planet

https://pmc.ncbi.nlm.nih.gov/articles/PMC10427517/

[48] How Green Is Your Software? - Harvard Business Review

https://hbr.org/2020/09/how-green-is-your-software

https://hbr.org/2020/09/how-green-is-your-software
https://hbr.org/2020/09/how-green-is-your-software#:~:text=By%202040%2C%20it%20is%20expected,of%20software%20can%20be
https://pmc.ncbi.nlm.nih.gov/articles/PMC10427517/
https://pmc.ncbi.nlm.nih.gov/articles/PMC10427517/#:~:text=planet%20pmc,1%20In
https://pmc.ncbi.nlm.nih.gov/articles/PMC10427517/#:~:text=Digital%20sufficiency%3A%20conceptual%20considerations%20for,1%20In
http://googlesystem.blogspot.com/2008/02/most-frequently-used-features-in.html
http://googlesystem.blogspot.com/2008/02/most-frequently-used-features-in.html#:~:text=The%20Most%20Frequently%20Used%20Features,away
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday
https://elitebusinessmagazine.co.uk/people/item/office-workers-waste-more-time-on-slow-tech-than-they-spend-on-holiday

	The Ethical Imperative of Efficient Computing
	Historical Context: Doing More with Less
	The Rise of Software Bloat and Its Causes
	Environmental Impact of Inefficient Software
	The Human Cost: Productivity and Time Wasted
	The Illusion of Progress: Inefficiency vs. Feature Gains
	Towards Efficient and Sustainable Computing: A Call to Action

